A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine–phenylalanine motif
نویسندگان
چکیده
Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.
منابع مشابه
Solvent-Tuned Self-Assembled Nanostructures of Chiral l/d-Phenylalanine Derivatives of Protoporphyrin IX
Protoporphyrin IX is a naturally occurring amphiphilic porphyrin with a rigid hydrophobic nonpolar core and two polar propionic acid substitutions on the porphyrin ring. This molecule can be modified on the hydrophilic group, which can lead to strengthened π-π-stacking and spontaneous self-assembly into novel nanostructures. Herein, we use l- phenylalanine and d-phenylalanine to modify protopor...
متن کاملA self-assembled chiral capsule with polar interior.
Phenylalanine substituted resorcinarenes form self-complementary dimeric homo- or heterochiral capsules based on deeply buried electrostatic interactions (salt bridges) with numerous polar and non-polar functionalities in their interiors available for interactions with encapsulated polar molecules, as proved by X-ray analysis and diffusion NMR spectroscopy.
متن کاملRapid One-Step Separation and Purification of Recombinant Phenylalanine Dehydrogenase in Aqueous Two-Phase Systems
Background: Phenylalanine dehydrogenase (PheDH EC 1.4.1.20) is a NAD+-dependent enzyme that performs the reversible oxidative deamination of L-phenylalanine to phenylpyruvate. It plays an important role in detection and screening of phenylketonuria (PKU) diseases and production of chiral intermediates as well. The main goal of this study was to find a simple and rapid alternative method for pur...
متن کاملApplication of Magnetite Nanoparticles in Phenylalanine Removal from Water Samples
The purpose of the current research is investigating the phenylalanine removal by using magnetic nanoparticles (Fe3O4) from water samples. The effect of pH, contact time and phenylalanine concentration on phenylalanine adsorption efficiency by magnetite nanoparticles are studied in a batch system. Transmission electron microscopy (TEM), X-ray Diffraction Patterns (XRD) and...
متن کاملMolecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)
In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...
متن کامل